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Content-addressability and learning in neural networks 
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Abstract. The content-addressability of patterns stored in Ising-spin neural network models 
with symmetric interactions is studied. Numerical results from simulations on the ICL 
distributed array processor ( D A P )  involving systems with up to 2048 neurons are presented. 
Behaviour consistent with finite-size scaling, characteristic of a first-order phase transition, 
is shown to be exhibited by the basins of attraction of the stored patterns both in the case 
of the Hopfield model and for systems using a local iterative learning algorithm designed 
to optimise the basins of attraction. Estimates are obtained for the critical minimum 
overlaps which an input pattern must have with a stored pattern in order to successfully 
retrieve it. 

1. Introduction 

A content-addressable memory is one in which access to any of its stored entries is 
made without referring to the location of the entry; the entry (fact) may be retrieved 
by a cue which is a (sufficiently large) fraction of the stored fact itself. Such a memory 
will then be robust to noisy cues. 

Models of McCulloch-Pitts (1943) neural networks have been proposed as dis- 
tributed memories which exhibit such desirable content-addressable features (Hebb 
1949, Little 1974). A lot of interest has centred around fully connected spin-glass 
models using specific prescriptions for the connection matrix (Hopfield 1982, Amit er 
al 1985a, b, 1987a, b, Mtzard er al 1986, Gardner 1986, Bruce er a1 1987) and with 
models employing iterative error-correcting ‘learning’ algorithms (Wallace 1986, Bruce 
er a1 1986, Diederich and Opper 1987, Gardner 1988, Gardner er a1 1987a, b, Krauth 
and Mtzard 1987, Poeppel and Krey 1987). 

In a network of N neurons, the state of each neuron at time t is modelled as an 
Ising spin S,( t ) (  i = 1, . . . , N )  with dynamics governed by 

S ( t +  l )=sgn{h,(r)I  (1) 

where the effective local field h,(  1 )  on spin i due to the others is mediated through the 
interaction strengths (synaptic connections) T,: 

The stored entries of the memory are then the configurations (patterns) which are the 
fixed points of the dynamics (1) or, equivalently, those configurations in which every 
spin is aligned with its local field: 

S, h, 0 i = 1 ,  . . . ,  N .  (3) 
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Such a network behaves as a distributed memory since it is the interaction strengths 
T,, that determine the stable configurations of ( 1 ) .  So in order to store p = Na 
nominated patterns S' , r l ,  i = 1 , .  . . , N ;  r = 1 , .  . . , p ,  the T, will have to be prescribed 
appropriately. However, it is desirable not only to have the S'" being fixed points of 
( l ) ,  but also to have as large a region of attraction as possible around them. In this 
way the content-addressability (the maximum number of errors that could be tolerated 
in an  input pattern while remaining in the domain of attraction of the stored pattern) 
would be maximised. 

The Hebbian prescription for the connection strengths 

P 
T, = N- '  c sysy  

r =  1 
T,, = 0 (4) 

has been shown (Amit et a1 1985a) to store up  to p-0 .14N random uncorrelated 
patterns. The maximum storage capacity for such patterns is 2 N  patterns for general 
prescription of the Tv (Cover 1965, Venkatesh 1986a, b) and can be increased if the 
patterns have correlations (Gardner 1987, 1988). However, no analytical results have 
as yet been obtained for the content-addressability of fully connected models. So the 
first question addressed here concerns not only the storage capacity of (4), but also 
the content-addressability of the stored patterns S'". 

Numerical simulations were carried out on the ICL distributed array processor 
(DAP)-a 64 x 64 array of bit-processing elements-for networks of 512, 1024 and 2048 
spins. The updating process ( 1 )  was executed sequentially in the spin sites i = 1 ,  . . . , N, 
as it was for all simulations in this paper. (The parallelism in the simulations was 
achieved in the matrix-vector multiplies (2). The connections were not stored in these 
simulations, but rather the row of connections corresponding to the spin being updated 
was recalculated each time as required. More than 3 x lo8 conditional adds per second 
were achieved for N = 2048, p /  N = 0.10, while the number of single-spin updates per 
second was over 1700 for N = 512.) 

To determine the typical sizes of the basins of attraction (and hence the content- 
addressability) of the nominated configurations s'" in (4), states S(r , s ) ,  s = 1 , .  . . , nmo, 
were constructed having a given initial overlap m, with each pattern: 

and iterated to stability under (1 )  and ( 2 )  (where the $ (  1 + m,) sites at which S:r) = Slr*s)  
were random). The nominal pattern S"' was deemed to have been successfully recalled 
if the resultant stable state differed in no more than N spin sites. This margin of 
recall error allows for the possibility of ferromagnetic stable states (i.e. those which 
are highly correlated with the nominal states) being stored instead of the nominal 
states themselves. (For  N + cc and a G 0.14, these ferromagnetic states differ in no 
more than 1.5% (Amit er a1 1985a) of spin sites with respect to a nominal state.) 

Figure 1 shows the mean fraction J(m,)  (averaged over more than 1000 initial 
states) of states which were recalled with less than & N errors for various initial overlaps 
m, and for p = Na in (4).  (Note that error bars, which were typically between 1 and 
2'10, are suppressed in the interests of clarity.) 

The rate at which f ( m o )  increases from 0 to near 1 becomes more pronounced for 
(Y s 0.13 as the size of the system increases from N = 512 through N = 1024 to N = 2048 
spins. This change may approach a discontinuity as N + m ,  displaying a critical 
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Figure 1. The Hopfield model: ( a )  the fraction, 
f ( m o ) ,  of nominal states that are recalled with less 
than &, N errors from initial states having an initial 
overlap m,. Best-fit scaling forms ( 6 )  are shown for 
N = 5 1 2  (0), 1024 (e) and 2048 ( x )  at c r = O . O 3 ,  
0.06 and 0.10. ( b )  The finite-size scaling relation (6) 
is tested by plotting In[f/( 1 - f ) ]  against ma; ( c )  The 
initial overlap, m, required to give a mean recall 
fraction f is plotted against 1/ N for four different 
values o f f  (C, f = 0 . 2 ;  0, f = 0 . 3 ;  2, f = 0 . 7 ;  X,  

f =  0.8). Extrapolation to I /  N = 0 gives m = m,, the 
critical minimum overlap. *, extrapolation to m,. 

minimum overlap m,(a)  which an initial pattern must have with a stored pattern in 
order to be in its basin of attraction (and thus ensure its successful retrieval). 

This hypothesis is borne out by figure l ( b )  which demonstrates that the finite-size 
scaling behaviour 

( 6 )  

is obeyed to a good approximation. Best-fit curves of this form are shown for a = 0.03, 
0.06 and 0.10 in figure l (a) .  

Estimates for the critical overlaps m,( a )  are obtained by extrapolating to N +CO: 

in figure l ( c )  the initial overlap m o ( f )  required to obtain a given mean recall fraction 
f is plotted against 1 /  N. This analysis then suggests 

m,(0.03) = 0.111( 10) 

(The figures in the brackets on the right-hand side of these results denote the extrapola- 
tion errors due to the statistical fluctuations in the simulations for finite N.) 

Thus, for example, in a large network storing 0.06N patterns, each pattern could 
be successfully recalled (with less than & N  errors) from at most 78.2% noise (39.1% 
spins flipped). 

f (mo)/( l  - f ( m d )  = C exp[Na(mo- m,)l 

m,(0.06) = 0.218( 13) m,(0.1) = 0.372(17). 
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Such scaling behaviour, characteristic of a first-order phase transition, would imply 
that the basins of attraction of the stored patterns become completely isotropic in the 
limit of N + a .  

In contrast to this behaviour, at a =0.15f(mo) decreases (figure l ( a ) )  as N 
increases. This is consistent with an  analytical study of this model (Amit er a1 1985a) 
which would predict f( mo) = 0 for 0 s mo s 1 as N + CC since this value of a lies beyond 
the critical value (20.14) for which no  nominal states (or states highly correlated with 
them) are stored. 

Another measure of the content-addressability is described in figure 2: the mean 
final overlap, mf, with a nominal configuration which a state acquires from an  initial 
state having overlap ma. As with the mean recall fraction in figure l ( a ) ,  mf is seen to 
increase more sharply as N increases for a 0.13, while it deteriorates for a = 0.15. 
Although, as with f (figure l ( a ) ) ,  m, stays close to 1 for large enough ma at a s 0.13, 
m ,  only becomes zero for mo + 0 since states which are not recalled nevertheless retain 
a non-zero final overlap with the nominal states. 

i 

]*#,e 

0 0 2  0 4  0.6 0 8  1 0  

Initial overlap, mo 

Figure 2. Mean final overlap, m,, after iteration from states (stored in the Hopfield model) 
having initial overlap m,. N = 5 1 2  (O), 1024 (o), 2048 (x ) .  

2. Content-addressability after learning 

A 'learning' algorithm for modifying the connection strengths Tj, (which is essentially 
an extension of perceptron learning (Minsky and Papert 1969)) has been shown 
(Wallace 1986, Bruce et a1 1986) to be capable of perfectly storing up  to at least N 
patterns on a network of N spins. This algorithm is as follows. An error mask E ;  is 
defined at each site i for each nominal pattern ( r ) :  
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In other words, the mask is assigned the value 0 (1 )  if the spin at site i is (is not) 
aligned with its local field. The connections T, are then modified accordingly: 

(8) 

This form retains the symmetry of the connections and thus ensures the existence of 
a Lyapunov or energy function (Hopfield 1982) 

N N  

E ( S ) = - f  T,S,S, 
r = l  , = 1  

(9) 

so that any trajectory under single spin-flip dynamics will terminate at a stable 
configuration (which minimises E ) .  (An asymmetric rule in (8) could equally well be 
used. Convergence theorems exist for both the symmetric (Wallace 1986) and asym- 
metric (Gardner et a1 1987a) versions.) 

Note that this algorithm is local in the sense that any modification to a connection 
strength only depends on the error mask and states of the spins at the sites at either 
end of the connection. There is therefore obvious parallelism to be exploited in 
executing the algorithm. 

Starting from the prescription (4) and then using (7) and (8), Na states were stored 
exactly on a network of N = 512 for values of a between 0.13 and 1.0. Figure 3 shows 
the mean final overlap, mf, after iteration from a state with overlap m,. (These results 
typically involved around 1000 states per value of m, and up to 16000 single-spin 
updates per second were achieved.) Although all the nominal states are indeed perfectly 
stored for a = 0.5 and a = 1.0, they have very poor content-addressability. (In fact, 
for a = 1.0, initial states having merely one spin misaligned out of the 512 results in 
over 65% of the states failing to be recalled-the non-recalled states end up with a 
final overlap of around 0.6.) Thus this learning algorithm appears to install no 
appreciable content-addressability at these higher values of a (0.5 and l . O ) ,  but instead 
merely creates fixed points of (1) which have negligible regions of attraction. 

1.0 - 

0.9 - 

0.8 - 

E- 
d O ? -  - 
L 

> 

3 0 6 -  
c 
U 
.- 

0 4 4  I 1 I , , , , , , , 
0 0.2 0 4  0.6 08 1 0  

Initial overlap, m, 

Figure 3. As figure 2, but after use of the learning algorithm ( 7 )  and (8). N = 512; U = 0.13 
(01, 0.15 (o), 0.20 (A), 0.50 (V),  1.0 ( x ) .  



250 B M Forrest 

Ini t ial  overlap, m, 

Figure 4. Comparison of the fraction of nominal states recalled with less than N errors 
from various initial overlaps m, before (broken lines) and after (full lines) utilisation of 
the learning algorithm ( 7 )  and (8), starting from the Hopfield-model prescription (4) .  
N = 512; a = 0.13 (0), 0.15 (o), 0.20 ( X ) .  

However, content-addressability is substantially improved at a = 0.15 and 0.2 (and 
improved to a lesser extent at CY =0.13), as is evident from figure 4, which compares 
the fraction of states recalled with less than & N  errors from various initial overlaps 
m, before and after implementation of the learning algorithm. Simulations with larger 
N would be required to determine whether finite content-addressability would be 
installed as N + CO. 

3. An improved learning algorithm 

The tiny basins of attraction created around the nominal states by the algorithm ( 7 )  
and (8) for higher values of the storage ratio a are probably due to the fact that when 
the algorithm terminates, although all the spins S;" in any nominal configuration S'" 
are correctly aligned with their local fields ( h # ) ,  the majority of them will not be strongly 
aligned (i.e. h,Sj", although positive, will be small). 

Now, if F denotes the set of spins which have been flipped with respect to a 
nominal state S'", then an aligned spin S j r )  will also flip if 

j c F  

Consequently, even if a small number of spins have been flipped, this may be sufficient 
to misalign many of the local fields and project the state of the system on a trajectory 
taking it further from the nominal state. 

In order to alleviate this problem learning schemes have been proposed (Gardner 
et al 1987a, b, Poeppel and Krey 1987) which involve iterating from 'noisy' versions 
of nominal configurations. This approach requires sampling a large enough representa- 
tion of starting configurations for each nominal one. 
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Other approaches which have been proposed (Diederich and Opper 1987, Gardner 
1987, 1988, Krauth and MCzard 1987), and the one adopted here, attack the problem 
of weak alignment between spin and local field directly by attempting to find solutions 
for the T, subject to the more stringent condition 

(11) 

on the alignment of the spins Sjr) .  This was achieved here by using a modification of 
the error mask (7); 

Sj"h, 2 B > 0 i = l ,  . . . ,  N ; r = l ,  . . . ,  p 

The bound B was scaled to be of the same order of magnitude as Sl"h,-if the 
connections T, are O ( T )  then h, (and hence Sj"h,) will be O(TJN) .  The form of B 
employed here was 

B = M ( (  TtJ,ON1" (13) 

where the angular brackets denote the average with respect to all the bonds in the j th  
row of the T,, matrix, which was performed after all the nominal states had been tested 
(so that learning was still local during each sweep). The form of B ensures that M is 
0(1), independent of N and of any rescaling of the T, (under which the dynamics 
(1) are invariant). 

That the imposition of (1 1) results in a direct and substantial improvement in the 
content-addressability of the solution for the connections Tv can be seen from the 
numerical results presented in figures 5 ( a )  and (b).  Both at LY = 0.25 (figure 5 ( a ) )  and 
a = 0.5 (figure 5 ( b ) )  the trend from N = 256 to N = 512 indicates that the ordinary 
learning algorithm (7)-which corresponds to B = M = 0 in (12)-will probably install 
negligible content-addressability as N + CO. In contrast, however, the perfect recall 
fraction, fp, for a given M > 0, exhibits a crossover effect for increasing N similar to 
the behaviour of the recall fraction for lower values of a in figure l (a) .  A best-fit 

Initial overlap, m, Initial overlap, m,, 

Figure 5. After completion of the improved learning algorithm (12) and (8) at ( a )  a = 0.25 
and ( b )  a = 0.5. The fraction, ,fp, perfectly recalled from states with initial overlap m, is 
plotted for two different system sizes: N = 256 (broken curves) and N = 512 (full curves). 
A best-fit scaling form ( 6 )  is shown for the three non-zero values of M. 
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finite-size scaling form ( 6 )  for f,( mo) is also plotted in figure 5 and extrapolation to 
N + a3 yields the following estimates for the critical minimum overlap m,( a,  M ) :  

m,( a = 0.5, M = 1.0) = 0.75(3). m,( a = 0.25, M = 2.0) = 0.44(2) 

Then, for example, the solution with M = 1.0 at a =0.5 on a large network would 
ensure perfect recall of any of the N nominal patterns from states having no more 
than 25% noise (12.5% spins flipped). 

The rate of decrease of wrongly stored spins is approximately exponential as 
learning proceeds (figure 6 ) .  (One learning cycle is defined as a complete sweep (8) 
through all the nominal states.) As M increases, this exponential learning rate decreases 
and will presumably tend to zero as M approaches the optimal value for symmetric 
connections. These results also demonstrate that the rate of learning appears to be 
independent of N. 

0 10 20 30 40 50 
Learning cycles 

Figure 6. The (natural logarithm of the) fraction of wrongly stored spins as the learning 
algorithm ( 1 2 )  and (8)  proceeds. One learning cycle consists of a complete sweep through 
all the nominal vectors. a = 0 . 2 5 ,  N = 256 ( x ) ,  512 (0); U = 0.5, N = 256 (0), 512 (U). 

In figure 7 the number of ‘learns’ per nominal state is plotted against M ;  one learn 
consists of a sweep through one nominal pattern if it has at least one bit (spin) wrongly 
stored. The number of such learns required grows rapidly as M approaches the largest 
values used here-M = 2.0 at a = 0.25 and M = 1.0 at a = 0.5-suggesting that these 
values of M are near the largest possible (at least for symmetric T,). 

If connections J,, are chosen which satisfy 

J ; = N  
J f ‘  

then the optimal value of K such that 

has been shown (Gardner 1987, 1988) to satisfy 
cc 

l / a  = ( 2 ~ ) - ’ / ~  J - K  ( t + K ) * e x p ( - ~ t ’ ) d t  



60 - 

50 - 

5 4 0 1  
.h 

u=0.25 
X 

I 
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0 1.0 2.0 3.0 
M 

Figure 7. The number of learns required per nominal state; a nominal state contributes 
one to the number of learns during a learning cycle only if it has at least one spin wrongly 
stored at that time. N =256 ( x ) ,  512 (*). 

when, in general, the connections Ju are allowed to assume asymmetric values. Now, 
if the connections TI, used here are rescaled (under which (1) is invariant) to 

then they satisfy (14) and (1 1) becomes 

N-1’2Sy) Jus;’)> M ( 2 / T ) ” 2  (18) 
j # i  

as the distribution of Tj  remains Gaussian of zero mean (figure 8) after learning-it 
merely becomes wider for larger M-so that, in (18), M is multiplied by the ratio of 

0 

0 0 2  0 4  0 6  0 8  

Figure 8. The final distribution of the absolute value of the connections 7;, after completion 
of the learning algorithm (12) and (8). A best-fit Gaussian form is provided. ( a )  M = 2.0, 
a = 0.25; ( b )  M = 1.0, a = 0.5. Gaussian fit: N = 256 (- - -), 512 (-). 
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the mean absolute value of a Gaussian variable (of zero mean) to its width, i.e. (2/ T ) ” ~ .  

(The width of the final T,, distribution is a factor of J 2  narrower for N = 512 than for 
N = 256. This is consistent with the expectation that the width of the integer distribution 
NT, should be proportional to the square root of the number of patterns being learnt, 
i.e. to {Na}”’-the number of modifications to a typical T, should be proportional 
to p = Na and these modifications are approximately random.) 

Thus the formulation employed in this paper is equivalent to (14) and (15) (for 
which there exists a convergence theorem (Gardner 1988)) with 

K = M(2/7r)’I2. (19) 
The optimal values of K ( a )  for a = 0.25 and 0.5 are (from (16)) 

K(0.25) = 1.74 K (0.5) = 1.04. 

These correspond to 
M(0.25) = 2.18 M(0.5) = 1.30 

which lie above the largest values M(0.25) = 2.0 and M(0.5) = 1.0 tried here, at which 
learning becomes rapidly more difficult (figure 7).  It may be that these optimal values 
of M cannot be attained while maintaining the symmetry of the T,. 

4. Conclusions 

As is well known by now, the Hopfield model is rather limited in terms of its capacity 
to store patterns-in the limit of N + ~ o  it fails to store more than 0.15N patterns. 
However, the analysis of the numerical studies of this model presented here would 
indicate that, allowing for some recall errors, it still performs as a reasonable content- 
addressable memory for storage ratio a u p  to 0.10. Previous work (Amit 1987) has 
shown good retrieval for a up  to 0.13. Not surprisingly, the content-addressability 
decreases as more patterns are stored-the growing number of spuriously created 
states, in addition to the other nominal states themselves, reduce the region of attraction 
around a nominal state. 

Implementation of the ‘naive’ learning algorithm (7) and (8) has been shown to 
provide perfect storage u p  to at least a = 1.0, but only achieves appreciable content- 
addressability for a s 0.2 at N = 512. The solution it provides for higher values of (Y 

look like being of no use at large N. 
In contrast, generalisation of (7)-( 12) has been shown to provide finite content- 

addressability for finite values of M in (13) for a up  to at least 0.5. The trend for 
increasing N suggests that finite content-addressability will be achieved as N + 00. 

The number of bits required for storage of the synapses T, is larger for this learning 
algorithm than for the Hopfield model, since a wider distribution of T, is produced. 
However, the width of the integer synapses NT, scales as V” (figure 8), as it does in 
the Hopfield model, so the number of bits of synaptic information required will be 
O( N’ In d ’ N )  in both cases. Therefore, since they both store O( N 2 a )  bits of informa- 
tion, their relative storage capacities-the number of bits of stored information per bit 
of synaptic information-will both be of the same order, namely, O( l / l n  N ) .  Hence 
the improved learning algorithm is superior even in terms of relative capacity since it 
stores all N’a bits exactly and provides a larger region of attraction, 

It is not clear whether imposing symmetry on the connections will prevent the 
optimal value of M being attained. However, these results indicate that values of M 
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not far below the optimal are achievable within this restriction. A feature of this type 
of algorithm is that only one iteration sweep per nominal state is required for one 
learning cycle. Algorithms which involve iteration from noisy initial patterns require 
testing more than one state per nominal state at each learning cycle. The number of 
possible states differing from a nominal state in a given amount of sites increases 
exponentially in the number of sites which differ, although the number of states required 
to train on to achieve finite content-addressability may not necessarily suffer this 
exponential growth. This latter type of algorithm can provide the opportunity of 
creating anisotropic basins of attraction, an  option not provided by the type used here. 
Comparison of both types of algorithms would be required to determine which solution 
provided fastest iteration to stability after learning has been completed, although, 
unlike the algorithm used here, the 'learning with noise' algorithms can provide for 
solutions which recover nominal states from noisy versions in one sweep. 

It would be interesting to apply this algorithm to much larger systems than N = 256 
and N = 512 to see if the basins of attraction continue to exhibit scaling behaviour for 
finite M, as the trend for increasing N suggests here. 
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